
Adding an external field to reconnection on MAIZE
Work by Thomas Varnish, with Simran Chowdhry and Lansing Horan IV

Strong external fields prevent reconnection
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Quadrupolar and guide fields provide pressure imbalance
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Planar Wire Arrays on COBRA (1MA, 150 ns rise)
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Work by Rishabh Datta
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Planar wire array @ 1 MA matches:
• Driving magnetic field (100 T)
• Current per wire (70 kA)
• Wire gap (0.8 mm)
of exploding cylindrical array on Z @ 10 MA

Datta, R., Angel, J., Greenly, J. B., Bland, S. N., Chittenden, J. P., 
Lavine, E. S., Potter, W. M., Robinson, D., Varnish, T. W. O., Wong, 
E., Hammer, D. A., Kusse, B. R., & Hare, J. D.  (2023)
“Plasma flows during the ablation stage of an over-massed 
pulsed-power-driven exploding planar wire array. “
Physics of Plasmas 30, 092104
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Shadowgraphs characterize ablation from thick wires

Wire diameters >75 microns show poor ablation,

and early closure of the anode-wire gap

200 ns

Planar plasma flows converge to form a pinch
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Raw Interferograms Line-integrated Electron Density

Pinch exhibits strong XUV emission
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Discrete 50 µm wires easily visible in XUV image

100 µm wires not visible -> merging of wire cores and poor ablation

Time-gated XUV Images of the Planar Wire Array
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3D Resistive MHD Simulation Show Pinch Dynamics
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Current density in 3D Simulation 
with realistic electrode geometry 

Field lines curve around 
outermost wires

The jxB force of bent field 
lines causes converging flow 

and pinch formation

Current in pinch upto 40% of 
that in wires

Simulating radiatively cooled reconnection on Z

Radiative cooling significantly affects reconnection 
layer structure, and reconnection rate

Non-Radiative Radiatively-cooled

Work by Rishabh Datta and Simran Chowdhry

Radiative cooling: denser, colder layer, & faster reconnection

inflow
shock
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Radiation affects the layer and the plasmoids

Without Cooling:

• , in the layer ,
in the plasmoids

• in the layer in the 
plasmoids

With Cooling:

• localized in plasmoids, 
reduced flux pile up

• Cooler, denser 
plasmoids and layer

• Plasmoids radiate 
strongly

Note: Exaggerated aspect ratio

Plasmoids undergo radiatively driven collapse

• For < , A grows faster than A’

• Larger plasmoids collapse earlier

= 0 at =

Plasmoid width: width at a given O-point, 
traced from the nearest X-point.

Significant Modulation of Plasmoids in 3D

Modulations consistent with m = 1 MHD kink instability

Radiatively cooled reconnection experiments on Z

First exploding wire array load on 
the Z machine (20 MA, 300 ns rise time)
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The Z pulsed-power machine

Load hardware for the MARZ experiment
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X-ray imaging shows collapsing layer with hotspots
Experiment 

Images
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X-Ray emission shows radiative collapse

> 1 keV X-Ray emission (8 um Be)

Sharp fall in X-ray emission consistent with rapidly cooling 
reconnection layer. 

Diode Signal Current

X-Ray spectroscopy constraints hotspot properties

z3781

X-Ray Spectrum (time-integrated)
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X-ray spectrum consistent with hotspots of size < 1mm, 
temperature ± eV, and ion density < × cm-3

Fitting of Al K-Shell Line ratios

Future work: Laser Imaging on Z (LIONZ)

Probe beam:
• 532 nm, 25 mm diameter
• 20 ns FWHM pulse length

PI: David Yager-Elorriaga

150 ns 200 ns 250 ns• Monte Carlo 
ray-tracing 
of probe 
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3D ne

• Ray-transfer 
matrix to 
account for 
optics and 
finite 
numerical 
aperture
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Electrohydraulic fracturing for enhanced geothermal

• Deep geothermal requires high 
permeability rock for efficient 
power generation

• Potential technique: 
electrohydraulic fracturing with 
high voltage pulses (~ 1 MV): 

• Ohmic heating of injected brine 
induces pulsed pressure waves;

• Fracturing of rock enables 
increased water flow rate;

Pulser

+ -

~1 MV

Kasevich et al., US 2015/0167440 A1, 2015. 

Work by Antonio Magnanimo

PENGUIN for lab-scale experiments 

Study basic mechanism on small rock 
samples under controlled conditions

• Pulser for ENhancing Geothermal Utility and INnovation;

• High voltage (100 kV) and high current (up to 100 kA) 

• 3 kJ of stored energy

Re-use existing pulser:
Shapovalov, R. V., Spielman, R. B., & Imel, G. R. (2017). An 
oil-free compact X-pinch plasma radiation source: 
Design and radiation performance. Review of Scientific 
Instruments, 88(6), 063504. 

Lab setup

High-voltage 
power supply

Triggering 
system

Power supply filter

Dumping system
Rock sample

(Load)

Coaxial cable

Remote control panel 
(Optically insulated)

Minimized inductances for quick current rise-time

• , , , = 140 nF;

• , , , = 16 nH;

• , , , = 8 m ;

• = 10 20 nH;

• = 10 nH;

• = 100 300 ;

• = = 60 kV;• = 560 nF;

• = 3 kJ.

+

Brick 

+

Simulated output for 100 Ohm rock sample

100 kV

1 kA

Rise time: 1 ns 
(minimized inductance)

3 kJ

100 MW

The new long-pulse PUFFIN facility at MIT, 1 MA in 2 

40 kJ energy to load

puffin.mit.edu

Side-on and end-on probing
Diagnostic design by Zhiyuan Jiang

Two colour:
• Simultaneous or delayed 

measurements along 
same LoS

• 355 nm also available

Side-on and end-on (axial):
• Mach-Zehnder 

Interferometry
• Shadowgraphy/schlieren
• Faraday rotation imaging

Side-on
1064 nm

Side-on
532 nm

End-on
1064 nm

Lab space renovated, pulsed-power components ready

LTD5 modules arrived 
May 2022

Mezzanine construction finished 
September 2022

Laser barrier finished 
March 2023

Vacuum chamber and transmission lines ready

All machining complete
September 2023

All welds complete
October 2023
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